We have collected the most exciting new researches in the field of genetics and cellular research in the past week.
Iodine-Radiolabeled Mesenchymal Stem Cell (MSC)-Exosomes and Their CD73 Enzymatic Activities
MSC-derived exosomes have shown therapeutic potential in the areas of cardiovascular, orthopaedic, ophthalmologic, immune, dermatologic diseases and radiation sickness. Efficient radioisotope-labelling of exosomes remains as a challenging process. A team led by researchers at the Singapore General Hospital demonstrate iodine-131 radiolabeled exosomes using both chloramine-T and Pierce Iodination methods, and characterized I-labelled exosomes via their CD73 enzymatic activities.
Nano-seq analysis reveals different functional tendency between exosomes and microvesicles derived from hUMSC
Extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUMSCs) are widely considered to be the best mediators for cell-free therapy. An understanding of their composition, especially RNA, is particularly important for the safe and precise application of EVs. Up to date, the knowledge of their RNA components is limited to NGS sequencing and cannot provide a comprehensive transcriptomic landscape, especially the long and full-length transcripts. Our study first focused on the transcriptomic profile of hUMSC-EVs based on nanopore sequencing.
Exosomes and miRNAs Effects Spinal Cord Injury
Abstract Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties.
Team reports on enhanced wound healing, hemostasis with exosome-loaded gelatin sponges from umbilical cord stem cells
Rapid wound healing remains a pressing clinical challenge, necessitating studies to hasten this process. A promising approach involves the utilization of human umbilical cord mesenchymal stem cells (hUC-MSCs) derived exosomes. Recently, a research team sought to investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.
Exosomes as a drug delivery tool for cancer therapy: a new era for existing drugs and oncolytic viruses
Abstract Introduction: Exosomes are cell-derived nanovesicles involved in cell-to-cell communications. These nanovesicles are generally considered to contain important carriers of information such as DNA and RNA, and show specific tropism.
Areas covered: The combination of existing therapeutic agents with exosomes enhances therapeutic effects by increasing uptake into the tumor. Induction of immunogenic cell death (ICD) may also be triggered more strongly than with the drug alone. Oncolytic viruses (OVs) are even more effective as a drug in combination with exosomes. Although OVs are more likely to cause immune activity, combination with exosomes can exert synergistic effects. OVs have potent anti-tumor effects, but many limitations, such as being limited to local administration and vulnerability to attack by antibodies. Incorporation into exosomes can overcome these limitations and may allow effects against distant tumors.
Expert opinion: Novel therapies using exosomes are very attractive in terms of enhancing therapeutic efficacy and reducing side effects. This approach also contains elements overcoming disadvantages in OVs, which have not been used clinically until now, and may usher in a new era of cancer treatments.
Differential traits between microvesicles and exosomes in enterovirus infection
Abstract Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are released by most cell types into the extracellular space and represent the pathophysiological condition of their source cells. Recent studies demonstrate that EVs derived from infected cells and tumors contribute to disease pathogenesis. However, very few studies have rigorously characterized exosomes and microvesicles in infectious diseases. In this study, we focused on subpopulations of EVs during the human enterovirus infection and explored the distinct traits and functions of EVs. We construct an effective immunomagnetic method to isolate exosomes and MVs from enterovirus-infected cells excluding virion. The morphology and sizes of exosomes and MVs have no significant alteration after enterovirus infection. Meanwhile, our study observed that the enterovirus infection could induce exosome secretion but not MVs. In vivo study showed that there was differential biodistribution between exosomes and MVs. Using deep RNA sequencing, we found that the cargo information in MVs rather than in exosomes could accurately reflect pathological condition of original cells. Our study demonstrated that it should be considered to use MVs as clinical diagnostics during in enterovirus infection because their composition is reflective of pathological changes.