We have collected the most exciting new researches in the field of genetics and cellular research in the past week.
Ceramide releases exosomes with a specific miRNA signature for cell differentiation
Abstract
Exosomes are well established effectors of cell–cell communication. Their role on maturation of embryonic cells located in hippocampus, seat of memory, is unknown. Here we show that ceramide facilitates release of exosomes from HN9.10e cells extending information for cell differentiation to neighboring cells. We found only 38 miRNAs differentially expressed in exosomes derived from ceramide-treated cells in comparison with control cells (including 10 up-regulated and 28 down-regulated). Some overexpressed miRNAs (mmu-let-7f-1-3p, mmu-let-7a-1-3p, mmu-let-7b-3p, mmu-let-7b-5p, mmu-miR-330-3p) regulate genes encoding for protein involved in biological, homeostatic, biosynthetic and small molecule metabolic processes, embryo development and cell differentiation, all phenomena relevant for HN9.10e cell differentiation. Notably, the overexpressed mmu-let-7b-5p miRNA appears to be important for our study based on its ability to regulate thirty-five gene targets involved in many processes including sphingolipid metabolism, sphingolipid-related stimulation of cellular functions and neuronal development. Furthermore, we showed that by incubating embryonic cells with exosomes released under ceramide treatment, some cells acquired an astrocytic phenotype and others a neuronal phenotype. We anticipate our study to be a start point for innovative therapeutic strategies to regulate the release of exosomes useful to stimulate delayed brain development in the newborn and to improve the cognitive decline in neurodegenerative disorders.
New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways
Abstract Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell–cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Japan designs world’s first immuno-chromatography kit for extracellular vesicles
Japan-based Shimadzu Corporation has collaborated in developing Exorapid-qIC, an immuno-chromatography kit for extracellular vesicles (CD9), launched for advanced domestic sales by Dai Nippon Toryo Co.
Exosomes: current knowledge and future perspectives
Abstract
Exosomes are membrane-bound micro-vesicles that possess endless therapeutic potential for treatment of numerous pathologies including autoimmune, cardiovascular, ocular, and nervous disorders. Despite considerable knowledge about exosome biogenesis and secretion, still, there is a lack of information regarding exosome uptake by cell types and internal signaling pathways through which these exosomes process cellular response. Exosomes are key components of cell signaling and intercellular communication. In central nervous system (CNS), exosomes can penetrate BBB and maintain homeostasis by myelin sheath regulation and the waste products elimination. Therefore, the current review summarizes role of exosomes and their use as biomarkers in cardiovascular, nervous and ocular disorders. This aspect of exosomes provides positive hope to monitor disease development and enable early diagnosis and treatment optimization. In this review, we have summarized recent findings on physiological and therapeutic effects of exosomes and also attempt to provide insights about stress-preconditioned exosomes and stem cell-derived exosomes.