top of page
Lisa

Weekly Exosomes Digest (1/4 Februar 2024)

We have collected the most exciting new researches in the field of genetics and cellular research in the past week.




The Crucial Role of Exosomes in the Tumor Microenvironment and in Cancer Treatment


The complex and dynamic world of cellular communication within the human body is still a subject of continuous exploration and discovery. One of the intriguing areas of study in cellular biology is the role of exosomes, especially in the context of the tumor microenvironment (TME). These tiny vesicles, derived from various immune cells, have been found to play a fascinating part in regulating the immune response, influencing tumor progression, and even serving as potential therapeutic agents in cancer treatment.



Exosomes: potential targets for the diagnosis and treatment of neuropsychiatric disorders


The field of neuropsychiatry is considered a middle ground between neurological and psychiatric disorders, thereby bridging the conventional boundaries between matter and mind, consciousness, and function. Neuropsychiatry aims to evaluate and treat cognitive, behavioral, and emotional disorders in individuals with neurological conditions. However, the pathophysiology of these disorders is not yet fully understood, and objective biological indicators for these conditions are currently lacking. Treatment options are also limited due to the blood–brain barrier, which results in poor treatment effects. Additionally, many drugs, particularly antipsychotic drugs, have adverse reactions, which make them difficult to tolerate for patients. As a result, patients often abandon treatment owing to these adverse reactions. Since the discovery of exosomes in 1983, they have been extensively studied in various diseases owing to their potential as nanocellulators for information exchange between cells. Because exosomes can freely travel between the center and periphery, brain-derived exosomes can reflect the state of the brain, which has considerable advantages in diagnosis and treatment. In addition, administration of engineered exosomes can improve therapeutic efficacy, allow lesion targeting, ensure drug stability, and prevent systemic adverse effects. Therefore, this article reviews the source and biological function of exosomes, relationship between exosomes and the blood–brain barrier, relationship between exosomes and the pathological mechanism of neuropsychiatric disorders, exosomes in the diagnosis and treatment of neuropsychiatric disorders, and application of engineered exosomes in neuropsychiatric disorders.




Roles of exosomes in immunotherapy for solid cancers


Although immunotherapy has made breakthrough progress, its efficacy in solid tumours remains unsatisfactory. Exosomes are the main type of extracellular vesicles that can deliver various intracellular molecules to adjacent or distant cells and organs, mediating various biological functions. Studies have found that exosomes can both activate the immune system and inhibit the immune system. The antigen and major histocompatibility complex (MHC) carried in exosomes make it possible to develop them as anticancer vaccines. Exosomes derived from blood, urine, saliva and cerebrospinal fluid can be used as ideal biomarkers in cancer diagnosis and prognosis. In recent years, exosome-based therapy has made great progress in the fields of drug transportation and immunotherapy. Here, we review the composition and sources of exosomes in the solid cancer immune microenvironment and further elaborate on the potential mechanisms and pathways by which exosomes influence immunotherapy for solid cancers. Moreover, we summarize the potential clinical application prospects of engineered exosomes and exosome vaccines in immunotherapy for solid cancers. Eventually, these findings may open up avenues for determining the potential of exosomes for diagnosis, treatment, and prognosis in solid cancer immunotherapy.




New insight into the role of exosomes in idiopathic membrane nephropathy


Exosomes, nanoscale extracellular vesicles (EVs) derived from the invagination of the endosomal membrane, are secreted by a majority of cell types. As carriers of DNA, mRNA, proteins, and microRNAs, exosomes are implicated in regulating biological activities under physiological and pathological conditions. Kidney-derived exosomes, which vary in origin and function, may either contribute to the pathogenesis of disease or represent a potential therapeutic resource. Membranous nephropathy (MN), an autoimmune kidney disease characterized by glomerular damage, is a predominant cause of nephrotic syndrome. Notably, MN, especially idiopathic membranous nephropathy (IMN), often results in end-stage renal disease (ESRD), affecting approximately 30% of patients and posing a considerable economic challenge to healthcare systems. Despite substantial research, therapeutic options remain ineffective at halting IMN progression, underscoring the urgent need for innovative strategies. Emerging evidence has implicated exosomes in IMN’s pathophysiology; Providing a fresh perspective for the discovery of novel biomarkers and therapeutic strategies. This review aims to scrutinize recent developments in exosome-related mechanisms in IMN and evaluate their potential as promising therapeutic targets and diagnostic biomarkers, with the hope of catalyzing further investigations into the utility of exosomes in MN, particularly IMN, ultimately contributing to improved patient outcomes in these challenging disease settings.




Creative Biolabs: Exploring Exosome Solutions for Traumatic Brain Injury


Creative Biolabs, a leading biotechnology company committed to advancing exosome therapies, harnesses the expertise of its seasoned scientists and cutting-edge technology to enhance the efficiency and convenience of experimental processes for global clients.




The role of exosomes and their applications in cancers


Cancer is a serious public health problem worldwide. Generally, current cancer treatment encompasses surgery, radiotherapy, chemotherapy and immunotherapy, or others. But they are not fully effective because of the increasing drug resistance. Recently, there have been conspicuous advances in the use of exosomes for cancer therapy. Exosomes are cellular membrane-derived vesicles with a diameter of 50–150 nm, which are involved in various physiological and pathological processes. In cancer, exosomes can participate in regulating the tumor microenvironment, impacting tumor proliferation and progression. Moreover, many studies have proved that exosomes can not only deliver drugs to target cells with a high efficiency, but also carry specific information of cells derived from parent cells. And different sources of exosomes exhibit multiple performances in cancer therapy. Thus, exosomes could be exploited in various innovative approaches to cure cancers. In this review, we specifically discuss the role of exosomes in cancer, the therapeutic and diagnostic applications, and the actions of different sources of exosomes in cancers.




Harnessing genetically engineered cell membrane-derived vesicles as biotherapeutics


Cell membrane-derived vesicles (CMVs) are particles generated from living cells, including extracellular vesicles (EVs) and artificial extracellular vesicles (aEVs) prepared from cell membranes. CMVs possess considerable potential in drug delivery, regenerative medicine, immunomodulation, disease diagnosis, etc. owing to their stable lipid bilayer structure, favorable biocompatibility, and low toxicity. Although the majority of CMVs inherit certain attributes from the original cells, it is still difficult to execute distinct therapeutic functions, such as organ targeting, signal regulation, and exogenous biotherapeutic supplementation. Hence, engineering CMVs by genetic engineering, chemical modification, and hybridization is a promising way to endow CMVs with specific functions and open up novel vistas for applications. In particular, there is a growing interest in genetically engineered CMVs harnessed to exhibit biotherapeutics. Herein, we outline the preparation strategies and their characteristics for purifying CMVs. Additionally, we review the advances of genetically engineered CMVs utilized to target organs, regulate signal transduction, and deliver biomacromolecules and chemical drugs. Furthermore, we also summarize the emerging therapeutic applications of genetically engineered CMVs in addressing tumors, diabetes, systemic lupus erythematosus, and cardiovascular diseases.




Plant-derived exosomes extracted from Lycium barbarum L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold

Plant-derived exosomes (PEs) possess an array of therapeutic properties, including antitumor, antiviral, and anti-inflammatory capabilities. They are also implicated in defensive responses to pathogenic attacks. Spinal cord injuries (SCIs) regeneration represents a global medical challenge, with appropriate research concentration on three pivotal domains: neural regeneration promotion, inflammation inhibition, and innovation and application of regenerative scaffolds. Unfortunately, the utilization of PE in SCI therapy remains unexplored. Herein, we isolated PE from the traditional Chinese medicinal herb, Lycium barbarum L. and discovered their inflammatory inhibition and neuronal differentiation promotion capabilities. Compared with exosomes derived from ectomesenchymal stem cells (EMSCs), PE demonstrated a substantial enhancement in neural differentiation. We encapsulated isoliquiritigenin (ISL)-loaded plant-derived exosomes (ISL@PE) from L. barbarum L. within a 3D-printed bionic scaffold. The intricate construct modulated the inflammatory response following SCI, facilitating the restoration of damaged axons and culminating in ameliorated neurological function. This pioneering investigation proposes a novel potential route for insoluble drug delivery via plant exosomes, as well as SCI repair. The institutional animal care and use committee number is UJS-IACUC-2020121602.


Recent Posts

See All
bottom of page