top of page

Exosomes Digest (4/4 March 2025)

  • Lisa
  • Mar 31
  • 2 min read

We have collected the most exciting new researches in the field of genetics and cellular research in the past week.




Isolation, characterization and therapeutic potentials of exosomes in lung cancer: Opportunities and challenges

Lung cancer (LC) signifies the primary cause of cancer-related mortality, representing 24 % of all cancer fatalities. LC is intricate and necessitates innovative approaches for early detection, precise diagnosis, and tailored treatment. Exosomes (EXOs), a subclass of extracellular vesicles (EVs), are integral to LC advancement, intercellular communication, tumor spread, and resistance to anticancer therapies. EXOs represent a viable drug delivery strategy owing to their distinctive biological characteristics, such as natural origin, biocompatibility, stability in blood circulation, minimal immunogenicity, and potential for modification. They can function as vehicles for targeted pharmaceuticals and facilitate the advancement of targeted therapeutics. EXOs are pivotal in the metastatic cascade, facilitating communication between cancer cells and augmenting their invasive capacity. Nonetheless, obstacles such as enhancing cargo loading efficiency, addressing homogeneity concerns during preparation, and facilitating large-scale clinical translation persist. Interdisciplinary collaboration in research is crucial for enhancing the efficacy of EXOs drug delivery systems. This review explores the role of EXOs in LC, their potential as therapeutic agents, and challenges in their development, aiming to advance targeted treatments. Future research should concentrate on engineering optimization and developing innovative EXOs to improve flexibility and effectiveness in clinical applications.




Exosomes linked to blood-brain barrier dysfunction in pediatric obstructive sleep apnea


A new study by researchers from Marshall University and the University of Missouri highlights how exosomes—tiny vesicles released by cells—may play a key role in blood-brain barrier (BBB) dysfunction in children with obstructive sleep apnea (OSA), particularly those with neurocognitive deficits.




Enhanced Anti-Tumor Effects of Natural Killer Cell-Derived Exosomes Through Doxorubicin Delivery to Hepatocellular Carcinoma Cells: Cytotoxicity and Apoptosis Study


Exosomes are nanosized extracellular vesicles secreted by various cells, including natural killer (NK) cells, and are known for their low toxicity, high permeability, biocompatibility, and strong targeting ability. NK cell-derived exosomes (NK-exos) contain cytotoxic proteins that enhance tumor-targeting efficiency, making them suitable for treating solid tumors such as hepatocellular carcinoma (HCC). Despite their potential in drug delivery, the mechanisms of drug-loaded NK-exos, particularly those loaded with doxorubicin (NK-exos-Dox), remain unclear in HCC. This study explored the anti-tumor effects of NK-exos-Dox against Hep3B cells in vitro. NK-exos-Dox expressed exosome markers (CD9 and CD63) and cytotoxic proteins (granzyme B and perforin) and measured 170–220 nm in size. Compared to NK-exos, NK-exos-Dox enhanced cytotoxicity and apoptosis in Hep3B cells by upregulating pro-apoptotic proteins (Bax, cytochrome c, cleaved caspase 3, and cleaved PARP) and inhibiting the anti-apoptotic protein (Bcl-2). These findings suggest that NK-exos-Dox significantly boost anti-tumor effects by activating specific cytotoxic molecules, offering promising therapeutic opportunities for solid tumor treatment, including HCC.









Wattwil Laboratory

Industriestrasse 2
9630 Wattwil

Zürich Office

Tödistrasse 1
8002 Zürich

+41 71 571 09 97

©2024 Vita Motus AG

bottom of page