top of page
Lisa

Weekly Exosomes Digest (4/4 July 2023)

We have collected the most exciting new researches in the field of genetics and cellular research in the past week.






Deregulation of exosomal miRNAs in rheumatoid arthritis patients


Abstract

Exosomes are small-diameter endosomal vesicles secreted in all biological fluids and play biological/pathological roles in the cell. These pathological roles are played by exosome’s cargo molecules through inter-cellular communication. Exosomal cargo molecules contain proteins and miRNAs. miRNAs are small non-coding RNA fragments involved in the reduction of final protein output by destabilizing or suppressing the translation of target messenger RNA (mRNA). This deregulation of the protein due to miRNAs ultimately accelerates the process of disease pathogenesis. The role of exosomal miRNAs has been investigated in different diseases and the limited number of studies have been published concerning exosomal miRNAs and rheumatoid arthritis (RA). The current study is designed to investigate the role of exosomal miRNAs (miRNA-103a-3p, miRNA-10a-5p, miRNA-204-3p, miRNA-330-3p, and miRNA-19b) in the pathogenesis of RA. Furthermore, the role of selected exosomal miRNAs in RA pathogenesis was further explored by estimating oxidative stress and histone deacetylation in RA patients. In the current study, 306 RA patients and equal numbers of age/gender-matched controls were used. The level of expression of above-mentioned exosomal miRNAs was assessed by performing qRT PCR. Deacetylation and oxidative stress assays were performed to estimate the 8-hydroxydeoxyguanosine (8-OHdG level) and histone deacetylation levels using the Enzyme-linked immunosorbent assay (ELISA). Statistical analysis indicated a significantly downregulated expression of miRNA-103a-3p (p<0.0001), miR-10a-5p (p<0.0001), miR-204-3p (p<0.0001), miR-330-3p (p<0.0001) and miR-19b (p<0.0001) in RA patients compared to controls. Significantly increased levels of 8-OHdG (p<0.0001) and histone deacetylation (p<0.0001) were observed among RA patients compared to controls. Spearman correlation showed a negative correlation between the deregulated exosomal miRNAs and increased oxidative stress and histone deacetylation in RA patients. Receiver operating characteristics (ROC) curve analysis showed a good diagnostic specificity/sensitivity of the above-mentioned exosomal miRNAs among RA patients. These analyses indicated the potential role of deregulated exosomal miRNAs in the initiation of RA by targeting oxidative stress and histone deacetylation processes.




Identification and evaluation of circulating exosomal miRNAs for the diagnosis of postmenopausal osteoporosis

Abstract

Background

Postmenopausal osteoporosis (PMOP) is a common condition that leads to a loss of bone density and an increased risk of fractures in women. Recent evidence suggests that exosomal miRNAs are involved in regulating bone development and osteogenesis. However, exosomal miRNAs as biomarkers for PMOP diagnosis have not been systematically evaluated. In this study, we aim to identify PMOP-associated circulating exosomal miRNAs and evaluate their diagnostic performance.

Methods

We performed next-generation sequencing and bioinformatics analysis of plasma exosomal miRNAs from 12 PMOP patients and 12 non-osteoporosis controls to identify PMOP-associated exosomal miRNAs, and then validated them in an independent natural community cohort with 26 PMOP patients and 21 non-osteoporosis controls. Exosomes were isolated with the size exclusion chromatography method from the plasma of elder postmenopausal women. The plasma exosomal miRNA profiles were characterized in PMOP paired with controls with next-generation sequencing. Potential plasma exosomal miRNAs were validated by qRT-PCR in the validation cohort, and their performance in diagnosing PMOP was systematically evaluated with the receiver operating characteristic curve.

Results

Twenty-seven miRNAs were identified as differentially expressed in PMOP versus controls in sequencing data, of which six exosomal miRNAs (miR-196-5p, miR-224-5p, miR320d, miR-34a-5p, miR-9-5p, and miR-98-5p) were confirmed to be differentially expressed in PMOP patients by qRT-PCR in the validation cohort. The three miRNAs combination (miR-34a-5p + miR-9-5p + miR-98-5p) demonstrated the best diagnostic performance, with an AUC = 0.734. In addition, the number of pregnancies was found to be an independent risk factor that can improve the performance of exosomal miRNAs in diagnosing PMOP.

Conclusions

These results suggested that the plasma exosomal miRNAs had the potential to serve as noninvasive diagnostic biomarkers for PMOP.




Intravitreal Administration of Retinal Organoids-Derived Exosomes Alleviates Photoreceptor Degeneration in Royal College of Surgeons Rats by Targeting the Mitogen-Activated Protein Kinase Pathway


Abstract Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.




A review of exosomes and their application in cutaneous medical aesthetics


Abstract


Background

Exosomes have gained recent popularity in aesthetic medicine; however, there is still a dearth of understanding on the etiology of exosomes, their physiologic function, and regenerative capabilities.

Objective

The purpose of this article is to summarize some of the physiologic functions of exosomes, their mechanistic role, and current commercial landscape in regenerative aesthetics.

Methods

A Medline search was conducted with the keywords, exosomes, extracellular vesicles, stem cells, skin rejuvenation, and cutaneous aesthetics. MeSH term “exosomes” filtered by relevant subheadings was also utilized. Pertinent original articles encompassing animal studies, cell studies, and human studies were included. We restricted to articles published in the last 10 years.

Results

Pre-clinical studies have demonstrated the therapeutic capabilities of exosomes in wound healing, scar modulation, alopecia, and skin rejuvenation. Exosomes primarily exert their effects in a paracrine function and modulate the interactions between keratinocytes and other cells of the skin. Exogenous exosomes can be utilized in a variety of settings to bring about desired aesthetic outcomes and to date, has only been approved for topical administration.

Conclusion

The safety, efficacy, potency, and dosages of exosomes remains to be determined via robust human clinical trials. Isolation and purification techniques have yet to be standardized, and this would be required for regulatory approval of all delivery modes. Overall, exosomes deliver yet another therapeutic option in regenerative aesthetics.




Editorial: Exosomes and exosomal miRNAs as biomarkers in infection with Mycobacterium tuberculosis


TB is still a major global health problem despite the superb diagnostic therapeutic technologies that are currently accessible in health medicine (World Health Organization (WHO), 2022).


Active TB was by far the most common infectious cause of death worldwide before the COVID-19 epidemic. However, the COVID-19 pandemic substantially hindered the detection of TB cases (McQuaid et al., 2021; Migliori et al., 2021; Lindmeier, 2022)


Aktuelle Beiträge

Alle ansehen
bottom of page