We have collected the most exciting new researches in the field of genetics and cellular research in the past week.
Detecting lung cancer early with sugar-sensing nanotech
In the early stages you probably won’t even know you’ve got a problem. But by the time you investigate that persistent cough, your livelihood may already hinge on a range of expensive, invasive treatments.
Quan Zhou and Dr Richard Lobb say it doesn’t have to be this way – and they’ve got a sugar-sensing piece of technology that proves it.
Exosomes: the next frontier in vaccine development and delivery
Exosomes are small disk-shaped extracellular vesicles (EVs) that are naturally released into the environment by different types of cells. Exosomes range from 30-150 nm in size and contain complex RNA and proteins. They are widely found in body fluids such as blood, saliva, urine and breast milk and participate in cell communication by functioning as cell messengers. Almost all cell types can transmit information and exchange substances through the production and release of exosomes to regulate proliferation, differentiation, apoptosis, the immune response, inflammation, and other biological functions. Because exosomes exist widely in various body fluids, they are easy to obtain and detect and have the potential for use in disease diagnosis and prognosis detection.
Exosome for mRNA delivery: strategies and therapeutic applications
Messenger RNA (mRNA) has emerged as a promising therapeutic molecule with numerous clinical applications in treating central nervous system disorders, tumors, COVID-19, and other diseases. mRNA therapies must be encapsulated into safe, stable, and effective delivery vehicles to preserve the cargo from degradation and prevent immunogenicity. Exosomes have gained growing attention in mRNA delivery because of their good biocompatibility, low immunogenicity, small size, unique capacity to traverse physiological barriers, and cell-specific tropism. Moreover, these exosomes can be engineered to utilize the natural carriers to target specific cells or tissues. This targeted approach will enhance the efficacy and reduce the side effects of mRNAs. However, difficulties such as a lack of consistent and reliable methods for exosome purification and the efficient encapsulation of large mRNAs into exosomes must be addressed. This article outlines current breakthroughs in cell-derived vesicle-mediated mRNA delivery and its biomedical applications.