top of page
Lisa

Weekly Exosomes Digest (1/4 September 2024)

We have collected the most exciting new researches in the field of genetics and cellular research in the past week.



NCCS study uses exosomes to overcome resistance to epidermal growth factor receptor inhibitors


In a new study, clinician-scientists and researchers from the National Cancer Centre Singapore (NCCS) have demonstrated the use of exosomes to successfully target squamous cell cancer tumours that are usually resistant to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Their research is the first where exosomes have been applied to target TKI-resistant cancers in Singapore. The findings were published in the journal Developmental Cell last month.




Novel Therapeutic Mechanisms and Strategies for Intracerebral Hemorrhage: Focusing on Exosomes


Intracerebral hemorrhage (ICH) is a primary, non-traumatic cerebral event associated with substantial mortality and disability. Despite advancements in understanding its etiology and refining diagnostic techniques, a validated treatment to significantly improve ICH prognosis remains elusive. Exosomes, a subtype of extracellular vesicles, encapsulate bioactive components, predominantly microRNAs (miRNAs), facilitating and regulating intercellular communication. Currently, exosomes have garnered considerable interests in clinical transformation for their nanostructure, minimal immunogenicity, low toxicity, inherent stability, and the ability to traverse the blood-brain barrier. A wealth of studies has demonstrated that exosomes can improve the prognosis of ICH through anti-apoptosis, neurogenesis, angiogenesis, anti-inflammation, immunomodulation, and autophagy, primarily via the transportation or overexpression of selected miRNAs. More importantly, exosomes can be easily customized with specific miRNAs or bioactive compounds to establish delivery systems, broadening their potential applications. This review focuses on the therapeutic potential of exosomes in ICH, reviewing the mechanisms of molecular biology mediated by certain miRNAs, discussing the benefits, challenges, and future prospects in ICH treatment. We hope comprehensive understanding of exosomes based on miRNAs will provide new insights into the treatment of ICH and guide the translation of exosome’s research from laboratory to clinical practice.




Tailoring of apoptotic bodies for diagnostic and therapeutic applications: Advances, challenges, and prospects


Apoptotic bodies (ABs) are extracellular vesicles released during apoptosis and possess diverse biological activities. Initially, ABs were regarded as garbage bags with the main function of apoptotic cell clearance. Recent research has found that ABs carry and deliver various biological agents and are taken by surrounding and distant cells, affecting cell functions and behavior. ABs-mediated intercellular communications are involved in various physiological processes including anti-inflammation and tissue regeneration as well as the pathogenesis of a variety of diseases including cancer, cardiovascular diseases, neurodegeneration, and inflammatory diseases. ABs in biological fluids can be used as a window of altered cellular and tissue states which can be applied in the diagnosis and prognosis of various diseases. The structural and constituent versatility of ABs provides flexibility for tailoring ABs according to disease diagnostic and therapeutic needs. An in-depth understanding of ABs’ constituents and biological functions is mandatory for the effective tailoring of ABs including modification of bio membrane and cargo constituents. ABs’ tailoring approaches including physical, chemical, biological, and genetic have been proposed for bench-to-bed translation in disease diagnosis, prognosis, and therapy. This review summarizes the updates on ABs tailoring approaches, discusses the existing challenges, and speculates the prospects for effective diagnostic and therapeutic applications.




The molecular conversations of sarcomas: exosomal non-coding RNAs in tumor’s biology and their translational prospects


Exosomes mediate cell-to-cell crosstalk involving a variety of biomolecules through an intricate signaling network. In recent years, the pivotal role of exosomes and their non-coding RNAs cargo in the development and progression of several cancer types clearly emerged. In particular, tumor bulk and its microenvironment co-evolve through cellular communications where these nanosized extracellular vesicles are among the most relevant actors. Knowledge about the cellular, and molecular mechanisms involved in these communications will pave the way for novel exosome-based delivery of therapeutic RNAs as well as innovative prognostic/diagnostic tools. Despite the valuable therapeutic potential and clinical relevance of exosomes, their role on sarcoma has been vaguely reported because the rarity and high heterogeneity of this type of cancer. Here, we dissected the scientific literature to unravel the multifaceted role of exosomal non-coding RNAs as mediator of cell-to-cell communications in the sarcoma subtypes.




The concentration of salivary extracellular vesicles is related to obesity


A team of researchers at the Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of Helmholtz Munich in Leipzig and the University of Leipzig has uncovered a significant connection between the concentration of salivary extracellular vesicles and key parameters of obesity. This discovery advances the understanding of how these tiny messengers might influence metabolism and eating behavior. The results were published in the scientific journal Nutrients.



Aktuelle Beiträge

Alle ansehen
bottom of page